OSCAR 100 ES’HAIL 2 QATAR

Il mio interesse per l’attività radioamatoriale attraverso satelliti radioamatoriali  è iniziata negli anni 80 .

All’epoca facevo collegamenti  attraverso il satellite Oscar 7  uplink 70 cm con utilizzo di  un apparecchio IC404 e amplificatore autocostruito con valvola 4cx250 e antenna Tonna  a polarizzazione incrociata a 19 elementi.

La sezione ricevente era una antenna cubica a 5 elementi per i 144 , transverter autocostruito e ricezione in gamma 10 metri con ricetrasmettitore  IC751.

Per conoscere il passaggio del satellite utilizzavo un programma di acquisizione ed un rotore G-5400B della Yaesu per l’elevazione e azimuth delle antenne.

Ultimamente saputo del lancio del nuovo satellite geostazionario Oscar 100 il mio interesse si è riacceso e mi sono documentato per accedere a questo satellite.

Devo innanzi tutto ringraziare gli OM attivi su WhatsApp OSCAR-100 ES’HAIL 2 QATAR ed in particolare Tony IK1HG1 di Novara per i consigli e la grande disponibilità senza i quali non avrei intrapreso quest’avventura che non è ancora terminata.

 Il 15 Novembre 2018 da Cape Canaveral (Air Force Station Space Launch Complex 40) è stato lanciato il satellite radioamatoriale geostazionario Oscar 100 Es’hail-2 .

Il satellite ha un tempo di vita previsto di 15 anni e prevede due transponder , uno a banda stretta di 250 Khz per CW, SSB, PSK ed altri sistemi digitali ed uno a banda larga di 8 Mhz per attività DATV.

Ho deciso quindi di utilizzare l’upconverter a basso costo della DXPATROL  V.2 che grazie all’uso nell’oscillatore locale di un TXCO molto stabile ed un sintetizzatore con integrato ADF4351 permette  attraverso l’impostazione di  microswitch collegati ad un  PIC 12F675  di pilotare l’upconverter tramite trasmettitori di bassa potenza a frequenza  28-144-432 o 1296 Mhz.

 La potenza di uscita  a 2,4 Ghz è di circa 100 mW e le frequenze immagine  sono sotto i 60 dB grazie a due filtri saw .

Il pilotaggio a 28 Mhz che richiede invece un filtro supplementare a 2,4 Ghz poiché la frequenza immagine ottenuta per differenza dal LO è attenuata di soli 20 dB rispetto alla fondamentale  a causa della vicinanza a quest’ultima.

I 100 mW vengono amplificati da  un amplificatore cinese EDUP EP-AB003 2400 MHz modificato per farlo restare sempre in trasmissione come consigliato nel seguente link: https://www.george-smart.co.uk/2019/03/limesdr-edup-pa/

La potenza di uscita dall’amplificatore EDUP , misurata con un carico fittizio e diodo, è di 2,5 Watt ( 16 volts sul carico fittizio ).

Questa potenza è sufficiente per transitare sull’Oscar 100 a patto di mettere l’upconverter ed amplificatore vicinissimo all’antenna per minimizzare le perdite dovute al cavo coassiale.

Mia intensione è stata quella di mettere questi apparecchi all’interno dell’abitazione al riparo dalle intemperie e di arrivare in prossimità dell’antenna al PA da 30 Watt con 9 metri di RG58 che svolge la funzione di attenuatore poichè l’ingresso del PA accetta massimo 0,5 Watt.

Il segnale che arriva al PA è di circa 300mW e permette di lavorare il tranquillità.Il PA assorbe circa 1 A a 24 Volts e fornisce all’antenna circa 10 Watt.

Il PA è un progetto trovato sul sito di  DC1RJJ-DJ0ABR dove è possibile acquistare anche il circuito stampato

https://www.helitron.de/dj0abr/index.html


L’amplificatore è posizionato in una scatola stagna con un ampio dissipatore di alluminio nel lato posteriore .

Antenna primo fuoco di 1 metro di diametro

Usare una sola antenna per ricevere e trasmettere è un compromesso.La presenza delle spire davanti l’LNB comporta delle perdite in ricezione.

Questo è lo spettrogramma in banda DATV con le spire davanti all’LNB da cui si vede che il segnale utile è solo 1,5 db superiore al rumore

Per migliorare la ricezione ho spostato dal fuoco della parabola l’antenna trasmittente.

Così facendo ho migliorato la ricezione ma peggiorato la trasmissione. La soluzione migliore sarà quella di utilizzare due antenne separate, una per ricevere ed una per trasmettere.

Semplice sistema per riparare l’antenna ad elica trasmittente dalle intemperie

Il segnale utile in ricezione è, grazie a questa modifica, 6 db superiore al rumore e permette una buona ricezione anche in DATV.

La mia stazione per Oscar 100 occupa pochissimo spazio .E’ formata da un ricetrasmettitore SK-290 Sommerkamp che genera 3 watt in gamma 2 metri, DX-Patrol e EDUP EP-AB003 all’interno della scatola grigia, due alimentatori switching da 12 e 24 volts , un deviatore per alimentare l’LNB a 12 o 18 volts ( polarizzazione verticale per SSB o orizzontale per DATV) , un BIAS-Tee per alimentare l’LNB ed una chiavetta  SDR RTL2832.

In ricezione utilizzo il programma freeware “SDR Console” che ha la possibilità di agganciare il beacon in modo da rendere stabile e precisa in frequenza la ricezione ( paragonabile al GPSDO).

In un primo tempo avevo pensato di fare un down-converter per ricevere i 10 Ghz con un ricevitore gamma 10 metri.Utilizzava un pll con ADF4351 pilotato da Arduino uno ed un mixer ADE-25MH.

Pur funzionando perfettamente il down converter ( il video seguente lo dimostra) mi son dovuto ricredere e sono tornato al ricevitore SDR che presenta i seguenti vantaggi rispetto al downconverter : costo bassissimo, stabilità, precisione in frequenza , sensibilità elevatissima , possibilità di inserire filtri per abbassare il rumore , equalizzatore, visione dell’intero spettro di frequenza.

Nel seguente filmato metto a confronto il down-converter analogico con il ricevitore SDR in cui si sente che è abbastanza evidente l’attenuazione quasi totale del rumore nel ricevitore SDR.

Per misurare la potenza in trasmissione faccio uso di un wattmetro-rosmetro della REVEX che ha una sonda che arriva fino a 1,3 Ghz. Da prove fatte la potenza letta in gamma 2,4 Ghz è doppia rispetto a quella reale, per cui bisogna dividere per due la potenza. Il ROS sembra piuttosto attendibile.

https://youtu.be/MurtKJ8X_9s

Con 10 watt il segnale di ritorno è molto alto, 2 db sopra il beacon a 10,489.500 .

Ho fatto una prova anche in gamma DATV (portante)ed il segnale è oltre 10 db sopra il rumore.

Chiaramente la potenza è attualmente insufficiente per trasmettere in DATV sul satellite, per questo sto costruendo un PA da 140 Watt.

Si calcola che per una trasmissione sym_rate di 333 ks occorrono 75 watt su una parabola da 1 metro. Per sym_rate superiori occorrono potenze ancora più alte.

RICEZIONE DATV

Grazie alle informazioni avute dall’amico Tony IK1HG1 di Novara ho iniziato ad usare il programma DVB-S2 Demod GUI arrivato alla versione 2.0.12 che permette di ricevere la DATV utilizzando la stessa chiavetta SDR che si usa per ricevere la ssb.

Il programma freeware è stato compilato da Marcel Kroner ed è possibile scaricarlo sul forum di amsat -dl.

E’ indispensabile che il processore sia una CPU Intel Core i5 o meglio i7 con almeno 4 mega di RAM , sebbene alcuni OM usano con successo anche processori i3.

Dato il notevole lavoro che deve eseguire il processore, sembra che l’uso di un processore più performante possa ricevere anche segnali deboli altrimenti non decodificabili.

Qui di seguito metto un filmato che descrive l’utilizzo di questo programma .

Il lavoro non è finito perchè manca la parte trasmittente DATV.

Mi sto documentando in proposito e credo che la scelta finale cada su un adalm-pluto che pilota l’amplificatore cinese e tutti i successivi stadi amplificatori.

Come finale LDMOS da 140 watt userò questo

Sintetizzatore 35 Mhz-4,4 Ghz con ADF4351

Qualche tempo fa ho trovato un sito di un radioamatore danese OZ7Z https://vushf.dk/qo-100-eshail-uplink/ che descriveva come costruire un convertitore per i 2,4 Ghz facendo uso di moduli premontati a basso prezzo.

Di particolare interesse  mi è sembrato il sintetizzatore che fa uso di un ADF4351 premontato su una scheda di fattura cinese reperibile in internet a basso prezzo. La scheda viene pilotata da un processore Arduino Uno collegato ad un lettore LCD munito di tasti.

L’AD4351 ha basso rumore di fase , notevole escursione di frequenza 35 Mhz -4,4 Ghz e step minimi di  10 Khz.

Viene comandato da Arduino Uno che permette  di memorizzare 20 frequenzein EEPROM.

Il programma per il processore è di F6KBF e dal suo sito http://f6kbf.free.fr/html/ADF4351%20and%20Arduino_Fr_Gb.htm è possibile scaricare anche il programma con estensione .ino da caricare nel processore tramite  il programma freeware di Arduino.

Ho voluto sperimentare il circuito che mi ha funzionato al primo colpo.

Credo che un generatore di questo tipo può essere utile in molti progetti: taratura di filtri, trasmettitori in SHF etc.

Per esempio , sto pensando di costruire un convertitore di ricezione da 739 Mhz ( uscita dell’LNB ) a 28 Mhz .

Per fare questo mi serve un oscillatore locale da 711 Mhz  che potrebbe essere costituito da  questo generatore.

La potenza di uscita dell’  ADF4351 varia a secondo della frequenza da -5 a +1 dBm  , ma è sempre possibile amplificare l’uscita magari usando i moduli amplificatori 50 Mhz -4 Ghz premontati SPF5189Z a basso rumore , anch’essi di fattura cinese , che  guadagnano 20 db ed hanno una potenza massima di 22,7 dBm.

E’ prevista anche una base dei tempi a 10 Mhz con GPSDO esterno.

Prime prove di trasmissione utilizzando l’UP-Converter della DxPatrol versione 2

Dopo aver trovato il puntamento migliore in ricezione sul satellite geostazionario ES’Hail-2 OSCAR-100 utilizzando un LNB commerciale a PLL ed un ricevitore SRD con RTL2832, non ho resistito a fare una prova di trasmissione , anche se con piccolissima potenza , appena 200 mW misurati nel connettore dell’antenna.

In trasmissione ho utilizzato l’UPConverter della DXPatrol versione 2 che permette il pilotaggio anche in 144 Mhz seguito da un amplificatore da me costruito molti anni fa per la gamma 13 cm con uscita di 0,5 W che si riducono a 200 mW a causa dell’attenuazione di poco più di 1 metro di cavo RG58.

L’antenna è una spirale da 5 spire e l’antenna una parabola primo fuoco da 95 cm di diametro.

Per l’ascolto ho utilizzato il WEB –SDR  https://eshail.batc.org.uk/nb/ .

Il risultato è stato positivo a conferma dell’alta sensibilità del satellite.

La deviva in frequenza che si nota in ricezione trasmettendo in portante continua è dovuta alle numerose moltiplicazioni del quarzo a 10 Mhz TXCO , può essere evitata usando UN GPSDO esterno , oltretutto previsto sul UP Converter DXPatrol.

73 Roberto IK6BLO

Amplificatore HF lineare 200W HF 160-80-40 metri a Hexfet

Questo amplificatore , nato come un esperimento, aveva lo scopo di sperimentare in RF mosfet di potenza a basso costo ( due euro l’uno ) nati per alimentatori swiching.

Dopo aver provato vari mosfet ( fino a 6 irfp 250 in parallelo) ho deciso, seguendo anche il consiglio dell’amico Giuseppe I6KMP che ringrazio , di utilizzare solo due mosfet IRFP260 che dissipano 300 watts l’uno.

Sebbene con tensioni più elevate ( 40-45 volts) questo circuito può fornire  oltre 400 Watts in antenna, consiglio di non superare 33 volts di alimentazione. Questi mosfet infatti sono delicati e non gradiscono affatto le onde stazionarie per cui è stato necessario ridurre la tensione di alimentazione per evitare brutte sorprese. Inoltre necessitano particolare cura per il raffreddamento , specie se indiretto tramite mica isolante.

Le potenze ottenute con 33 volts di alimentazione  ed un pilotaggio di tre watts sono 100 Watts in 160 metri, 200 Watts in 80 metri e 100 Watts in 40 metri. Sulle gamme superiori il rendimento è scadente ( 20 Watts in 20 metri , 10 watts in 10 metri).

All’amplificatore devono seguire necessariamente filtri passa basso , uno per ogni gamma.

L’amplificatore oggi affianca quello valvolare da me costruito con 813 e mi è servito a farmi l’esperienza con i mosfet di potenza  in attesa di costruire un nuovo amplificatore con un vero mosfet per radio-frequenza  , sto pensando al  doppio mosfet BLF188.

Circuito stampato





Filtro Chebyshev  Low-pass Filter 5 elementi  da ARRL HANDBOOK 1993

BANDA 160 metri 0-1,9 Mhz BANDA 80 metri 2-3,9 Mhz BANDA 40  metri 4-7,9 Mhz BANDA 20 metri 8-19,9 Mhz BANDA 10 metri 20-30 Mhz
L1   3,30 uH L1  1,80 uH L1  0,82 uH L1  0,27 uH L1  0,18 uH
L2   6,35 uH L2  3,31 uH L2  1,60 uH L2  0,593 uH L2  0,388uH
L3   3,30 uH L3  1,80 uH L3  0,82 uH L3  0,27 uH L3  0,18 uH
C1    2000 pF C1  1000 pF C1  510 pF C1  200 pF C1  130 pF
C2    2000 pF C2  1000 pF C2  510 pF C2  200 pF C2  130 pF

Attenuazioni teoriche

Fco 2,16 Mhz Fco 4,37 Mhz Fco 8,44 Mhz Fco 19,9 Mhz Fco 31,2 Mhz
3 db   2,63 Mhz Fco 5,15 Mhz Fco 10,3 Mhz Fco 27,0 Mhz Fco 41,4 Mhz
20 db   3,62 Fco 7,01 Mhz Fco 14,3 Mhz Fco 38,6 Mhz Fco 58,9 Mhz
40 db   5,40 Fco 10,4 Mhz Fco 21,4 Mhz Fco 58,5 Mhz Fco 89,2 Mhz

Induttanze avvolte su toroidi Amidon  T68-2 e T68-6 spire calcolate con programma AMITOR 1.1

 (scaricabile dal sito di  IW3HZX) Condensatori silver-mica 500Volts isolamento.

       T68-2                           T68-2                        T68-2                    T68-6       T68-6                    

L1-L3=24 spir L2=33 spire L1-L3=18 spir L2=24 spire L1-L3=12 spir L2=17 spire L1-L3=8 spire L2=11 spire L1-L3=6 spire L2=9spire

RICETRASMETTITORE ANALOGICO HF A DOPPIA CONVERSIONE

Nella ricerca in rete di un progetto di ricetrasmettitore Hf , mi sono imbattuto nel seguente sito

Il sito appartiene ad  un radioamatore Indiano , ASHHAR FARHAN VU2ESE che ha creato una piccola azienda chiamata “HF SIGNALS” che con un prezzo  di poco superiore a 100 dollari spedisce un ricetrasmettitore già montato a copertura continua in HF.

A me non interessava acquistare il prodotto già pronto, ma lo schema mi è sembrato molto interessante .

Arduino nano, collegamenti con Si5351 e LCD

Circuito stampato uBITX

Circuito stampato con modifiche
uBITX VISTO DA SOPRA
uBITIX visto da sotto
Si5351 con filtri passa-basso e MAV11 per il primo mixer ad alto livello

uBITX IN COSTRUZIONE: prove del filtro a 12 Mhz di Ladder con 8 cristalli usando un generatore DDS.

ALTRE PROVE DEL FILTRO CON ANALIZZATORE DI SPETTRO SONO VISIBILI NELLA SEZIONE “STRUMENTI USATI PER LE AUTOCOSTRUZIONI” PRESENTE IN QUESTO SITO

Prima parte ricetrasmettitore HF doppia conversione

Seconda parte ricetrasmettitore HF doppia conversione

TRASMETTITORE SSB ANALOGICO HF 1-30 Mhz A SINGOLA CONVERSIONE

Progettato e costruito due anni fa con componenti che già avevo  , pensato come trasmettitore singolo da abbinare ad un ricevitore esterno facendo isoonda.

Generatore ssb e stadio mixer
Regolazione della potenza e filtri
Amplificatore finale
Amplificatore finale
Filtri passa basso

L’oscillatore finale è un DDS gemello di quello descritto in ” Strumenti usati per le autocostruzioni” , fa uso di un chip AD9951 pilotato da un PIC16F877 che ho programmato in assemble .

Il PIC pilota anche l’LCD, encoder ed i relè sia dei filtri passa basso , che dei filtri di banda che seguono il mixer.

Amplificatore lineare HF 1,8-30 Mhz con valvola 813 potenza 300 watts

L’idea di costruire questo amplificatore mi è venuta circa due anni fa leggendo un articolo in internet che parlava di  un amplificatore lineare con valvola 813  apparso su una rivista americana(QST anno 1958) . Da giovane negli anni 70-80 ero CB , avevo già sentito parlare di questa valvola  e dei fantastici collegamenti che permetteva di eseguire in gamma 11 metri.

Dopo una ricerca in internet ho trovato lo schema di W4SUD a cui ho apportato diverse modifiche anche per adattare i componenti che possedevo al progetto originale.

Ho trovato in cantina diversi componenti  che potevano servire per questa realizzazione acquistati alle fiere di elettronica , altri componenti difficili da trovare li ho acquistati direttamente su Ebay . Qualcuno afferma che oggi è molto più facile autocostruire rispetto a qualche decennio fa, questo grazie ad Internet , io concordo pienamente con questa affermazione.

Lo schema dell’alimentatore è anch’esso frutto della ricerca in Internet.

Attualmente uso questo amplificatore con soddisfazione su tutte le gamme HF con ottimi risultati riguardo all’emissione di spurie e qualità della modulazione. Altra nota positiva è che la valvola 813 è estremamente resistente , personalmente ho portato a termine QSO con presenza di onde stazionarie elevate senza apprezzabili conseguenze per la vita della valvola. Questo sarebbe stato impossibile con i moderni amplificatori a mosfet che sono molto suscettibili alle onde stazionarie.

Note negative di questo tipo di amplificatore lineare , come tutti gli amplificatori valvolari, sono la necessità di eseguire l’accordo di griglia e placca ad ogni cambio di frequenza e l’ingombro ed il peso notevole dell’amplificatore stesso .

Questo è il progetto originale a cui mi sono ispirato

Questo è lo schema che ho seguito

Schema dell’alimentatore HT , G2 ,G1

Modifiche da me apportate:

Circuito di ingresso su toroide T68-2 per le bande basse ( 160 e 80 metri ) e T68-6 per le bande più alte.

Valvole stabilizzatrici a gas sostituite con zener di potenza.

Il numero delle spire del circuito pi-greco in uscita è stato trovato sperimentalmente come anche sperimentalmente è stato trovato il numero delle spire per i toroidi di ingresso ( iniettando il segnale con un generatore e visualizzando l’accordo con una sonda a diodo).

CARICO ALCUNE FOTO DEL CIRCUITO DI INGRESSO

COMMUTATORE E TOROIDI ACCORDO DI INGRESSO
CONDENSATORE VARIABILE ACCORDO DI INGRESSO CON UN SOLO TOROIDE IN FASE DI PROVA

CARICO ALCUNE FOTO DELL’INTERNO DELL’AMPLIFICATORE IN FASE DI COSTRUZIONE

CARICO ALCUNE FOTO DELL’INTERNO DELL’AMPLIFICATORE TERMINATO

PARTICOLARE DEL COMMUTATORE PI-GRECO DI USCITA